

Implicative Quasi-semi-lattices

Paper ID: FSDM4040

Xiaolei ZHU and Wenjuan CHEN School of Mathematical Sciences, University of Jinan, China

Introduction

As is well-known that semi-lattices are always present in the study of algebras related to fuzzy logics. Recall that a partially ordered set (S, \leq) in which any pair of elements x and y of S has an infimum $x \land y$ is called a semi-lattice, thus a semi-lattice can be regarded as the generalization of a lattice [1]. It is easily seen that the definition of semi-lattice is equivalent to the conditions hold in (S, \leq) : $(x \land y) \land z = x \land (y \land z), x \land y = y \land x$ and $x \land x = x$ for any $x, y, z \in S$, so semi-lattices can also be seen as the commutative semigroups of idempotents and often appear in the pure algebraic investigation. Implicative semi-lattices which is an important subclass of semi-lattices were studied by Nemitz in [2]. Subsequently, weak implicative semi-lattices were introduced and the congruences on a weak implicative semi-lattice were characterized in [3].

On the other hand, Chajda introduced the notion of q-lattices as a generalization of lattices in 1993 [4]. Moreover, the ideals and filters of a q-lattice have been discussed in [5]. In order to establish more relationship between fuzzy logics and quantum computational logics, we want to introduce implicative quasi-semi-lattices as a generalization of implicative semi-lattices similarly as q-lattices generalized lattices in this paper.

Implicative quasi-semi-lattices

➤ Implicative quasi-semi-lattices

A *quasi-semi-lattice with top* is a system $(L, \Lambda, 1)$ in which L is a non-empty set, Λ is a binary relation in L such that for any $x, y, z \in L$, $x \wedge y = y \wedge x$, $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ and $x \wedge (y \wedge y) = x \wedge y$ and 1 is an element of L such that for any $x \in L$, $x \wedge 1 = x \wedge x$ and $1 \wedge 1 = 1$.

Let $(L, \Lambda, 1)$ be a quasi-semi-lattice with top. For $x, y \in L$, if there exists the largest regular element z such that $z \wedge x \leq y$, then z is called the residual of x relative to y and denoted by $x \rightarrow y$. If for any $x, y \in L$, $x \rightarrow y$ always exists, then $(L, \Lambda, 1)$ is called an *implicative quasi-semi-lattice* and usually denoted by $(L, \Lambda, \rightarrow, 1)$.

Here are some propositions about an implicative quasi-semilattice $(L, \Lambda, \rightarrow, 1)$ for any $x, y, z \in L$:

- (1) $x \land y \le z$ if and only if $x \le y \to z$;
- $(2) y \le x \to y;$
- (3) $x \rightarrow x = 1$ and $x \land x = 1 \rightarrow x$;
- (4) If $x \le y$, then $y \to z \le x \to z$ and $z \to x \le z \to y$;
- (5) $x \le y$ if and only if $x \to y = 1$;
- (6) $(x \to y) \land (y \to z) \le x \to z$;
- $(7) x \to (y \to z) = (x \land y) \to z;$
- $(8) x \to (y \land z) = (x \to y) \land (x \to z);$
- $(9) x \wedge (x \to y) = x \wedge y.$

Filters and filter congruences

> Filters

Let $(L, \Lambda, \rightarrow, 1)$ be an implicative quasi-semi-lattice. A non-empty subset F of L is called a *filter* of $(L, \Lambda, \rightarrow, 1)$, if the following conditions are satisfied:

- (F1) If x, $y \in F$, then $x \land y \in F$;
- (F2) If $x \in F$ and $y \in L$ with $x \leq y$, then $y \in F$.

> Filter congruences

Let $(L, \Lambda, \rightarrow, 1)$ be an implicative quasi-semi-lattice and θ be a binary relation on $(L, \Lambda, \rightarrow, 1)$. Then θ is called a *congruence* on $(L, \Lambda, \rightarrow, 1)$, if the following conditions are satisfied:

- (1) θ is an equivalence relation;
- (2) If $\langle x, y \rangle \in \theta$ and $\langle a, b \rangle \in \theta$, then $\langle x \wedge a, y \wedge b \rangle \in \theta$;
- (3) If $\langle x, y \rangle \in \theta$ and $\langle a, b \rangle \in \theta$, then $\langle x \rightarrow a, y \rightarrow b \rangle \in \theta$. For any $x, y \in L$, if $\langle x \land x, y \land y \rangle \in \theta$ implies $\langle x, y \rangle \in \theta$, then θ is called a *filter congruence* on $(L, \land, \rightarrow, 1)$.

> The relation between filters and filter congruences

1. Let $(L, \Lambda, \rightarrow, 1)$ be an implicative quasi-semi-lattice and F be a filter of $(L, \Lambda, \rightarrow, 1)$. Define a binary relation θ_F by $\langle x, y \rangle \theta_F$ if and only if $x \wedge f = y \wedge f$ for some $f \in F$. Then θ_F is a filter congruence on $(L, \Lambda, \rightarrow, 1)$.

Let $(L, \Lambda, \rightarrow, 1)$ be an implicative quasi-semi-lattice and θ be a filter congruence on $(L, \Lambda, \rightarrow, 1)$. Then $F_{\theta} = 1/\theta$ is a filter of $(L, \Lambda, \rightarrow, 1)$.

Let $(L, \Lambda, \rightarrow, 1)$ be an implicative quasi-semi-lattice, F be a filter of $(L, \Lambda, \rightarrow, 1)$ and θ be a filter congruence on $(L, \Lambda, \rightarrow, 1)$. Then $F = F_{\theta_F}$ and $\theta = \theta_{F_{\theta}}$.

Denote F(L) the set of all filters of $(L, \Lambda, \rightarrow, 1)$ and Con(L) the set of all filter congruences on $(L, \Lambda, \rightarrow, 1)$. Then F(L) and Con(L) are **one-to-one**.

2. Let $(L, \Lambda, \rightarrow, 1)$ be an implicative quasi-semi-lattice and A, B be two sets of $(L, \Lambda, \rightarrow, 1)$. Then the set formed by the common elements of set A and set B is called the intersection of set A and set B, denoted by $A \cap B$.

Let $(L, \Lambda, \rightarrow, 1)$ be an implicative quasi-semi-lattice. If F_1, F_2 are two filters of $(L, \Lambda, \rightarrow, 1)$ and θ_1, θ_2 are two filter congruences on $(L, \Lambda, \rightarrow, 1)$, define $F_1 \vee F_2 = [F_1 \cup F_2)$ and $\theta_1 \vee \theta_2 = [\theta_1 \cup \theta_2)$, then $(F(L), \cap, \vee)$ and $(Con(L), \cap, \vee)$ are lattices. Moreover, there exists an **isomorphism** between $(F(L), \cap, \vee)$ and $(Con(L), \cap, \vee)$.

References

- [1] Chajda I, Halas R, Kuhr J. Semilattice structures. Berlin: Heldermann Verlag; 2007. 223 P.
- [2] Nemitz WC. Implicative semi-lattices. American Mathematical Society. 1965 May;117:128-142.
- [3] Martin HJS. On congruences in weak implicative semilattices. Soft Comput. 2017 Jun;21(12):3167-3176.
- [4] Chajda I. Lattices in quasiordered sets. Acta Universitatis Palackianae Olomucensis. 1992 Jan;31(1):6-12.
- [5] Chen WJ. Filters and ideals in q-lattices. In: Xie Q, Zhao L, Li KL, Yadav A, Wang LP, editors. 17th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery; 2021 Jul 24-26; Guiyang, China: Springer; c2022. p. 349-358.