

Acar Can Kocabiçak, Prof. Dr. Magd Abdel Wahab

Ghent University, Faculty of Engineering and Architecture, Soete Laboratory

Introduction

The present study shows deep drawing process simulation using the finite element method (FEM). The 3D axisymmetric model performed sheet metal forming operations to reduce the computation time. The ductile fracture criteria were conducted to investigate forming limits during the sheet metal forming simulation.

Workpiece Material and Simulation Design

The annealed 5182 aluminum alloy was used during the deep drawing process simulation. The blank thickness was chosen as 0.96 mm for each simulation model, and 1 mesh size was generated. The die, holder, and punch were generated as a 3D discrete rigid body. The deformable shell element was used for the blank. Ductile fracture material criteria was defined for the workpiece. The 1/4 quarter 3D model was used for the analysis, and Abaqus/Explicit procedure was conducted for the simulation.

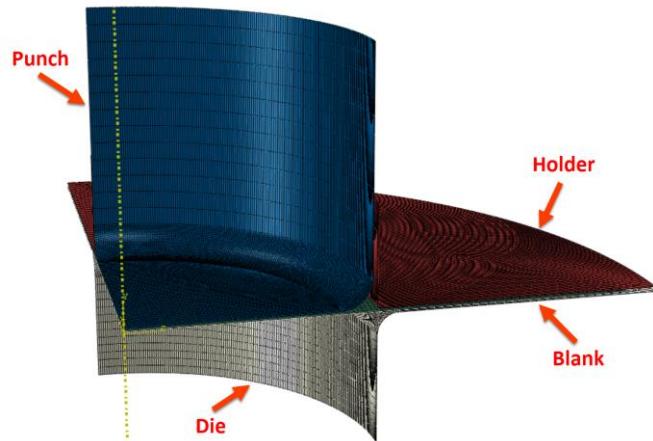
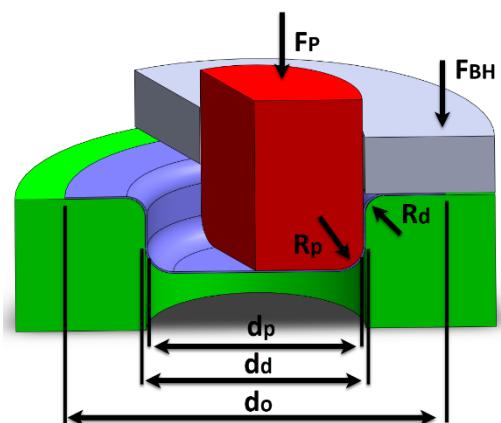



Fig. 1. 3D quarter axisymmetric deep drawing process model

Initial diameter of blank

Punch diameter

Holder diameter

Die diameter

Drawing ratio

Punch Radius

Die radius

Initial blank thickness

$$d_o = 216 \text{ mm}$$

$$d_p = 108 \text{ mm}$$

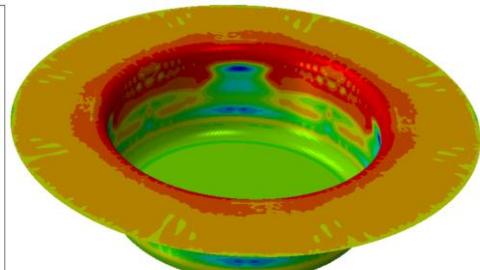
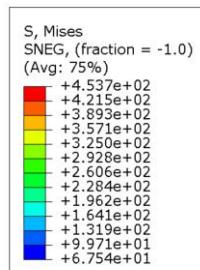
$$d_h = 110 \text{ mm}$$

$$d_d = 110 \text{ mm}$$

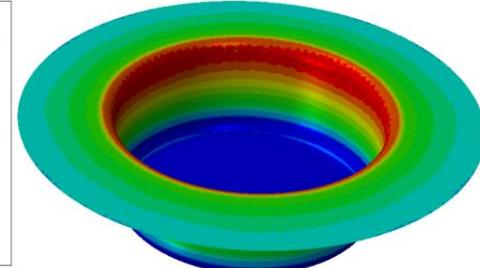
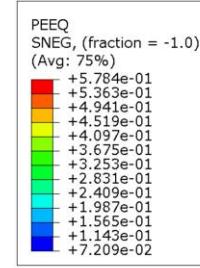
$$\beta = 2 \quad \beta = \frac{d_o}{d_p}$$

$$r_p = 7 \text{ mm}$$

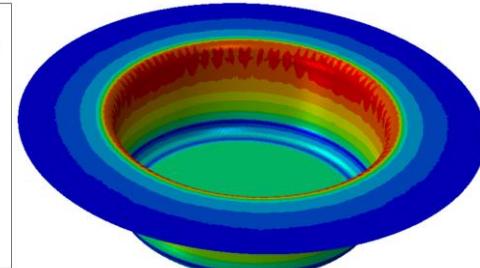
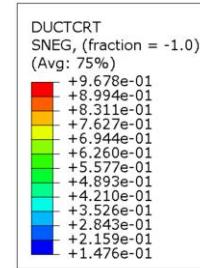
$$r_d = 5 \text{ mm}$$



$$t_0 = 0.96 \text{ mm}$$

3D-axisymmetric deep drawing simulation part details



Blank	3D Shell element
Punch	3D discrete rigid
Holder	3D discrete rigid
Die	3D discrete rigid

Finite Element Results



1) Stress results

2) Equivalent plastic results

3) Damage initiation results for ductile workpiece

Conclusions

The following conclusions were drawn from this study:

1. The maximum stress is around 453 MPa, accumulated on the workpiece's die radius area.
2. Relying on the stress results, the ductile criterion is a model for predicting the onset of damage due to high stress in the die radius zone.
3. The results show that the equivalent plastic strain has a significant role in predicting the ductile damage limits of the workpiece.

References

1. Rana A., Datta S., Kundu S. Materials Today: Proceedings, (2019), 750-755.
2. Wang Y. et. al. Transactions of Nonferrous Metals Society of China, (2016), 1251-1258, 26(5)
3. Gonfa Angasu and K. Srinivasulu Redd International Journal of Current Engineering and Technology (2016) Vol.6, No:4