

Origin and Evolution of Conceptual Differences between Two Measurement Theories

Shi Huisheng^a, Ye Xiaoming^b, Xing Cheng^b, Ding Shijun^b ^aAVIC Changcheng Institute of Metrology & Measurement, Beijing, 100095, China, ^bSchool of Geodesy and Geomatics, Wuhan University, Wuhan, Hubei, 430079, China Corresponding Author: Ye Xiaoming Email: xmye@sgg.whu.edu.cn

Different understanding of mathematical concepts in two theories

	Traditional measurement theory New concept theory		
Constant	True value and systematic error	Measured value	
Random variable	Random error and measured value	Error and true value	

Other major conceptual aifferences					
	Traditional measurement theory	New concept theory			
Conceptual sketch	Systematic error Random error True value x_T Mathematical expectation $E(x)$ Fig 1. Conceptual sketch of traditional theory	$\begin{array}{c c} \Delta = \Delta_{\rm A} + \Delta_{\rm B} \\ \hline \Delta_{\rm B} & \Delta_{\rm A} \\ \hline \\ True & {\rm Mathematical} \\ {\rm value} & {\rm expectation} \\ x_T & E(x) & x_0 \\ \hline \end{array}$			
Variance		The dispersion of all possible values of an errorthe evaluation of the probability interval of the error			
Error epistemology	Errors are classified into systematic	Both Δ_A and Δ_B are deviations and have their variances, and errors cannot be classified according to systematic and random way.			

Conceptual troubles in traditional measurement theory

- 1. The expression u(x) violates the mathematical concept of $u^2(C) = 0$, because measured value x is a numerical value. For example, $u(x) = \pm 0.21 \implies u(8844.43) = \pm 0.21$.
- 2. After the measurement is completed, the mathematical expectations of the measured value, systematic error and true value cannot be submitted.
- 3. Both accuracy and trueness are qualitative concepts, and the total error cannot be evaluated quantitatively.
- 4. The conceptual relationship between precision and uncertainty cannot be explained.
- 5. There are logical contradictions in error classification theory, and so on.

Conceptual interpretations in new concept theory

	Measured value x_0	Error D	True value x_T
Mathematical expectation	x_0	0	x_0
Variance	0	$u^2(\Delta)$	$u^2(\Delta)$