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Introduction: A new, simplified analytical method to conduct elastic stability and second-order lateral stiffness analysis of piles with
generalized end-boundary conditions on non-homogeneous elastic soil is derived in a classical manner and presented in detail. The
influence of the modulus of subgrade reaction, degrees of non-homogeneity, and intermediate end-boundary conditions on the pile
response are investigated via a parametric study. The proposed solution can be employed to perform either lateral deformation or elastic

buckling analysis.

Structural Model: The pile is connected to ends A and B by semi-
rigid connections and linear transverse springs with stiffness k,

and S

a’

and k, and S,, respectively. The pile has a stiffness EI,

Length L, and is embedded in a two-parameter elastic soil. The
modulus of subgrade reaction k, varies in a linear fashion
following the expression kg(x) = k,+cx.
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Governing Differential Equation (GDE):
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where F = (L*/EN(P —kg). A(X) = (L*/EI (ko + cL%), and Q(%) = (L*/EI)(ap + a1 L + a2(L%)?)

Boundary Conditions:
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Solution: The Differential Transformation Method (DTM) was used to find the solution to the GDE. This complex problem is reduced to
solve a polynomial function, where the coefficients of the series are found from a recursive equation obtained from the GDE.
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Critical load for a pile in a soil with (a) F=0 and (b) F=1 and various end-boundary
conditions. () fixed: () hinged: and (D) free.

Conclusions: A new, analytical approach to investigate the effect of generalized end-boundary conditions (p and S) and soil non-homogeneity
(F) on the pile’s critical load (P,;) and second-order lateral stiffness (S,) was developed. The well-known DTM Method was implemented to
find the solution to the GDE in a compact and easy manner. Finding the solution to this GDE using conventional approaches is a very complex
and cumbersome task. The results from the proposed model were validated against results from already available, but more limited in scope,
analytical approaches. The agreement was excellent.




