

R-Calculus For Post Three-Valued Description Logic

FSDM3641

Cungen Cao, Lanxi Hu, Yuefei Sui

Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences

School of Computer Science and Technology, University of Chinese Academy of Sciences

Introduction

In many-valued logic, it is important to give an explanation of the truth-values other than the truth **t** and the falsity **f**. For example, in a three-valued logic, the third value **m** is interpreted as unknown or indeterminate, and the definition of binary logical connectives are independent of **m**.

Description logics are different, because a concept seems natural to have different counterparts.

R-calculi is a belief revision operator satisfying AGM postulates, and a deduction system for enumerating a formula A into a consistent theory Δ to keep the theory A', Δ consistent as possible. A condition that there is a sound and complete **R**-calculus is that the based logic is decidable.

Description logics are fragments of first-order logic, some of which are decidable and some are not. We consider one of many-valued description logics: Post three-valued

description logics, where the logical language of Post logic contains a unary connective \sim , instead of \neg . Because for these logics there are sound and complete tableau proof systems, Gentzen deduction systems and deduction systems for many-placed sequents.

For decidable description logics, a problem is to define the semantics of quantifier concept constructors. In binary ones, an element a belongs to

interpretation of concept $(\forall R.C)$ if for any element b with $(a,b) \in R^I$, $b \in C^I$; and an element a belongs to interpretation of concept $\neg(\forall R.C)$ if for some element b with $(a,b) \in R^I$, $b \notin C^I$. Correspondingly, we define the element in Post three-valued description logic.

A theory (a set of statements) Δ is **t**-satisfiable if there is an interpretation I such that for any statement $C(a) \in \Delta$, $(C(a))^I \neq t$.

We will give a tableau proof system T_t for **t**-satisfiability, which is sound, complete and nonmonotonic.

Based on the tableau proof system T_t , we construct an **R**-calculus R_t for $\Delta \mid A \Rightarrow A', \Delta$. R_t is shown to be sound and complete.

Methods

- Post three-valued description logic
- Nonmonotonic tableau proof system
- **R**-calculus

Conclusions

This paper gave an **R**-calculus R_t for **t**-satisfiability in Post three-valued description logic, which is sound and complete.

Similarly there are **R**-calculi R_m and R_f for **m**-satisfiability and **f**-satisfiability, respectively, and there are transformations between R_t , R_m and R_f just as transformations T_t , T_m and T_f .