



# A Limit Theorem for Weighted Sums of Random Sets in Fuzzy Metric Space

FSDM4015

Chang LIU and Li GUAN  
 Faculty of Science, Beijing University of Technology,  
 100 Pingleyuan, Chaoyang District, Beijing

## Introduction

- In 1965, Zadeh introduce the fuzzy set theory.
- In 1994, George and Veeramani introduced the definition of fuzzy metric for single-valued variables and discussed the completeness and separability in fuzzy metric space.
- In 2005, Saadati and Vaezpour defined fuzzy normed space.
- In 2011, Gregori and Morillas introduced examples of fuzzy metrics and its applications.
- In 2021, Guan etc. introduced the definition of fuzzy metric for sets, discussed the properties and proved the laws of large numbers for random sets in the sense of fuzzy metric.

## Methods

**Lemma 1** Let  $\mathfrak{X}$  be a separable normed space. There exists a fuzzy normed space  $C(S^*)$  and a function  $j_0: K_{kc}(\mathfrak{X}) \rightarrow C(S^*)$  with the following properties: for  $A, B \in K_{kc}(\mathfrak{X})$ ,

$t > 0$

- (1)  $M_{d_H}(A, B, t) = M_d(j_0(A), j_0(B), t)$ ;
- (2)  $j_0(A + B) = j_0(A) + j_0(B)$ ;
- (3)  $j_0(\lambda A) = \lambda j_0(A), \lambda \geq 0$ ,

Where  $M_d$  is the fuzzy metric induced by metric  $d$  in embedding space. Thus,  $K_{kc}(\mathfrak{X})$  is embedded into a normed space by  $j_0(\cdot)$ .

**Lemma 2** Let  $\{V_n: n \geq 1\} \subset L^1[\Omega; K_k(\mathfrak{X})]$ . The fuzzy metric  $M_{d_H}$  is induced by  $d_H$ , then for any  $t > 0$

$$M_{d_H} \left( \sum_{i=1}^n V_i, \sum_{i=1}^n \text{cov}_i, t \right) \geq \min_{1 \leq i \leq n} M_{d_H} \left( \text{cov}_i, \{0\}, \frac{t}{\sqrt{p}} \right)$$

## Preliminaries

Throughout this paper, we assume that  $(\Omega, \mathcal{A}, \mu)$  is a complete probability space,  $(\mathfrak{X}, \|\cdot\|)$  is a real separable Banach space,  $K(\mathfrak{X})$  ( $K_k(\mathfrak{X})$ ) is the family of all nonempty closed (resp. compact) subsets of  $\mathfrak{X}$ , and  $K_{kc}(\mathfrak{X})$  is the family of all nonempty compact convex subsets of  $\mathfrak{X}$ .

**Definition** Let  $*$  be a continuous t-norm. The 3-tuple  $(K(\mathfrak{X}), M, *)$  is said to be a fuzzy metric space for sets, if the mapping  $M: K(\mathfrak{X}) \times K(\mathfrak{X}) \times (0, \infty)$  satisfies the following conditions,  $\forall A, B, C \in K(\mathfrak{X})$  and  $t, s > 0$ :

- (1)  $\forall t > 0, M(A, B, t) > 0$ ;
- (2)  $\forall t > 0, M(A, B, t) = 1 \Leftrightarrow A = B$ ;
- (3)  $M(A, B, t) = M(B, A, t)$ ;
- (4)  $M(A, B, t) * M(B, C, s) \leq M(A, C, t + s)$ ;
- (5)  $M(A, B, \cdot): (0, \infty) \rightarrow [0, 1]$  is continuous.

M is called a **fuzzy metric** on  $K(\mathfrak{X})$ .

## Conclusions

**Theorem 1** Let  $\{V_n: n \geq 1\} \subset L^1[\Omega; K_k(\mathfrak{X})]$  be an independent and compactly uniformly random sets. Let  $\{b_n: n \geq 1\}$  be a sequence of positive constants with  $b_n \uparrow$  and  $n = O(b_n)$ . If

$$\sum_{n=1}^{\infty} \frac{1}{b_n^p} E[\|V_n\|_K^p] < \infty, 1 \leq p \leq 2.$$

Then in the metric  $M_{d_H}$ , for  $t > 0$  we have the following convergence :

$$M_{d_H} \left( \frac{1}{b_n} \sum_{i=1}^n V_i, \frac{1}{b_n} \sum_{i=1}^n E[\text{cov}_i], t \right) \rightarrow 1 \text{ a.e.}$$

In this paper, we gave the strong limit theory for weighted sums of compact random sets in the sense of fuzzy metric, where the fuzzy metric is induced by  $d_H$ .