

A method for detecting coronary artery stenosis based on ECG signals

BEB6326

Huan Zhang¹, Xinpei Wang^{1,*}, Changchun Liu^{1,*}, Yuanyang Li², Yuanyuan Liu¹, Peng Li^{3,4}, Lianke Yao¹, Jikuo Wang¹, Yu Jiao¹

1 Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China

2 Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China

3 Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA

4 Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA

E-mail addresses: wangxinpei@sdu.edu.cn (X. Wang), changchunliu@sdu.edu.cn (C. Liu)

Objective: This study aims to correctly classify patients with varying degrees of coronary artery stenosis (VDCAS) by utilizing multi-domain features fusion of single-lead 5-minute ECG signals and machine learning methods, so as to provide reference for physicians to diagnose the CAD development process.

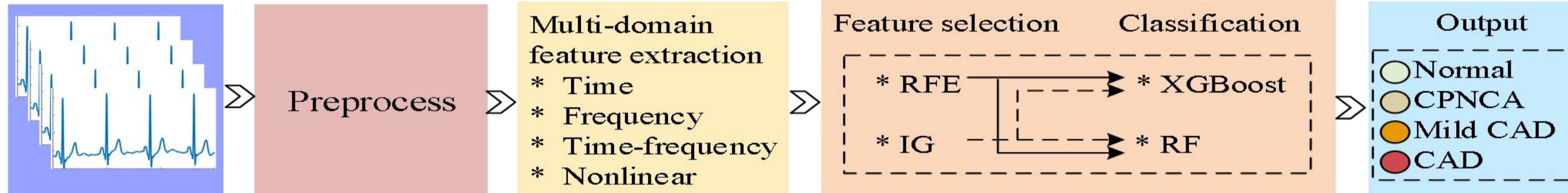
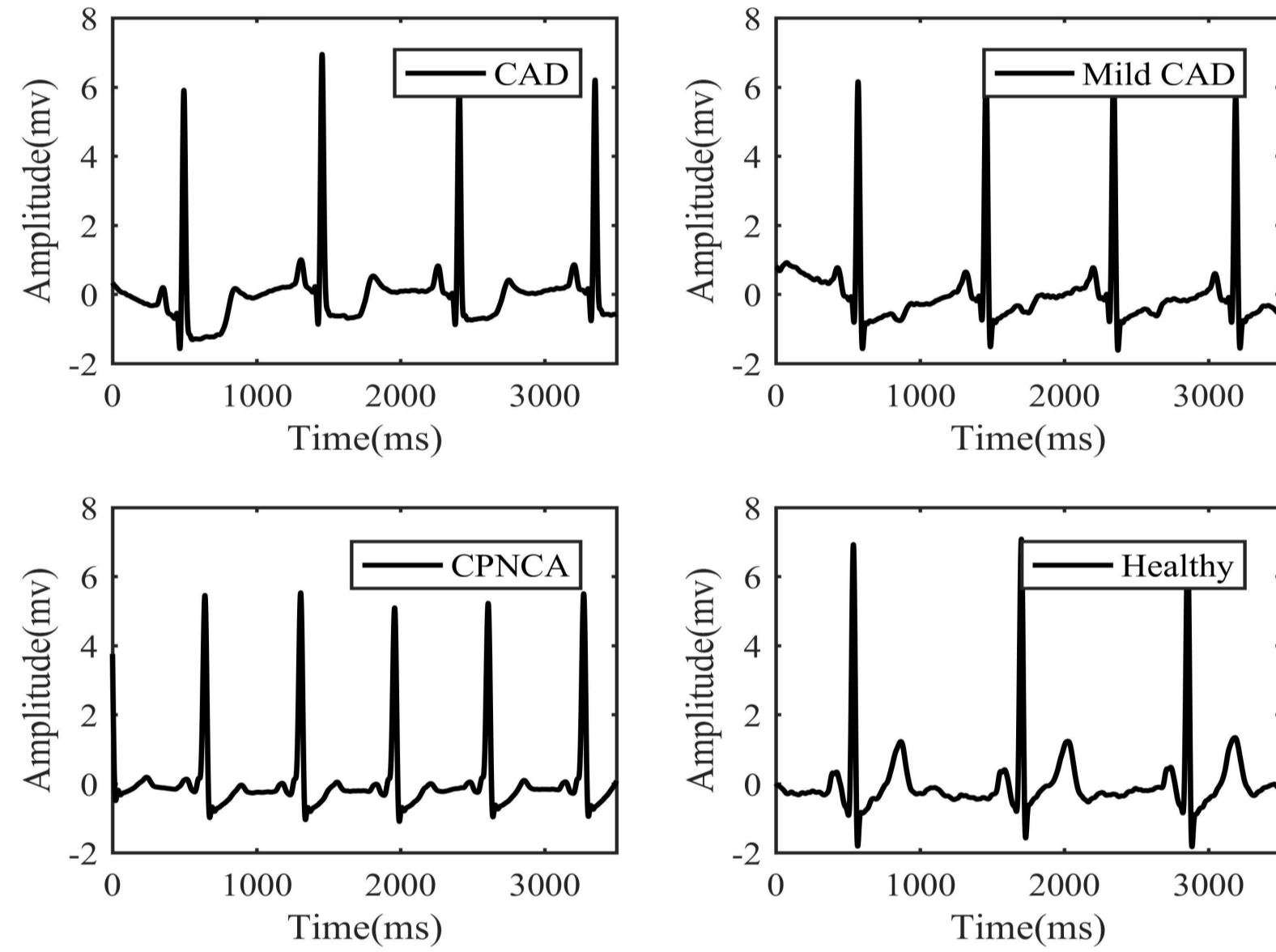
Method:**Results:****(1) Results of feature selection**

Figure 1. The ECG signals of different subjects, including (a) CAD patient, (b) mild CAD patient, (c) CPNCA patient, and (d) healthy patient.

(2) Classification results

Table 1 The comparison results of the two classifications

Label	Sensitive (%)	Specificity (%)	F1-score (%)	Accuracy (%)
RF	0 vs 3	90.00±13.33	90.0±14.91	94.18±7.91
XGB	0 vs 3	100.0±0.00	93.33±9.13	99.02±1.19

* Data are expressed as mean ± SD. Label 0 for health group, 3 for CAD group.

Table 2 The comparison results of the three classifications

Label	Sensitive (%)	Specificity (%)	F1-score (%)	Accuracy (%)
RF	0	97.53±2.01	82.35±9.84	92.97±2.40
	1	78.18±10.33	96.68±2.10	83.06±7.07
	2	83.33±10.54	100.00±0.00	90.54±6.34
XGB	Mean	86.34±6.04	93.01±2.94	88.86±4.42
	0	98.33±2.04	83.52±7.80	93.77±1.59
	1	78.18±7.60	98.67±1.63	85.34±8.90
	2	86.67±6.47	98.85±1.39	89.31±7.04
	Mean	87.72±2.03	93.68±1.89	89.47±1.49
				91.27±1.85

* Data are expressed as mean ± SD. Label 0 for healthy group, 1 for patients with luminal narrowing 1-49%, and 2 for patients with luminal narrowing ≥50%.

Table 3 The comparison results of the four classifications

Label	Sensitive (%)	Specificity (%)	F1-score (%)	Accuracy (%)
RF	0	73.33±10.60	99.42±1.14	80.84±8.89
	1	88.57±10.69	98.84±1.42	90.73±5.84
	2	100.00±0.00	86.92±5.44	93.48±2.54
	3	83.88±5.01	98.78±1.48	88.96±4.32
XGB	Mean	86.44±3.92	95.99±1.16	88.50±3.79
	0	90.00±8.16	97.71±2.13	88.67±5.90
	1	90.95±7.43	99.42±1.14	93.77±3.20
	2	98.00±4.00	92.55±6.85	95.13±3.01
	3	78.61±9.54	97.53±3.01	82.81±7.42
	Mean	89.39±3.05	96.80±1.28	90.09±2.62
				91.74±2.50

* Data are expressed as mean ± SD. Label 0 for health group, 1 for CPNCA group, 2 for mild CAD group, 3 for CAD group.

Conclusions:

- Multi-domain features fusion analysis of ECG signals can effectively excavate the hidden information of VDCAS.
- RFE combined with XGBoost algorithm is effective in distinguishing VDCAS patients.

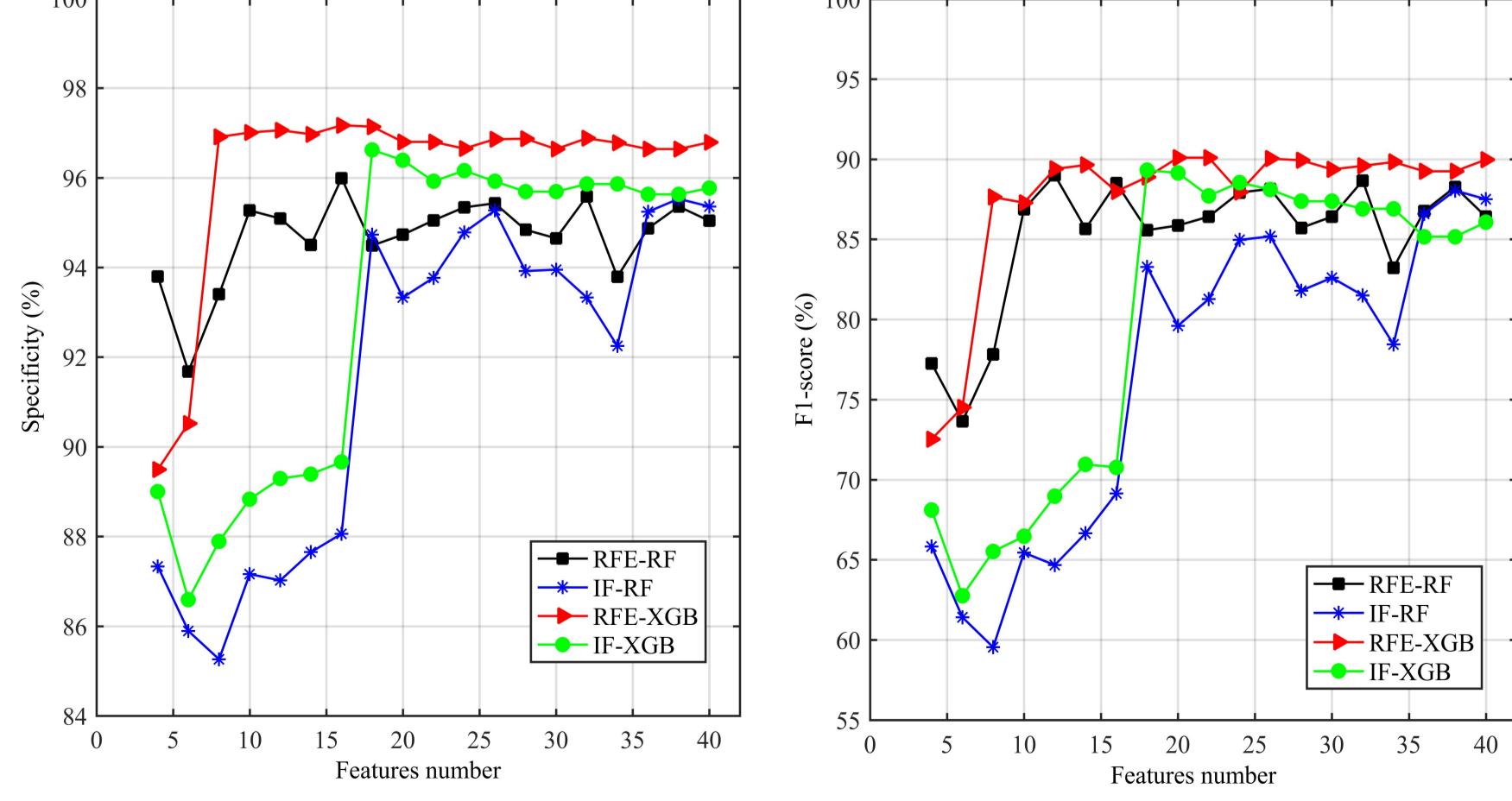


Figure 2. Classification results comparison of different feature numbers: (a) Accuracy; (b) Sensitivity; (c) Specificity; (d) F1-score.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (Nos. 62071277, 61501280, 61471223, 61601263).