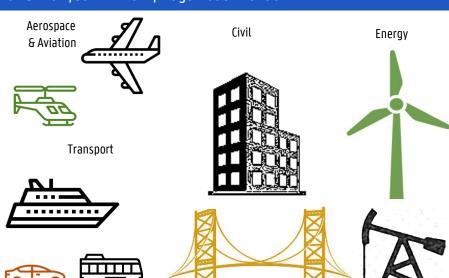


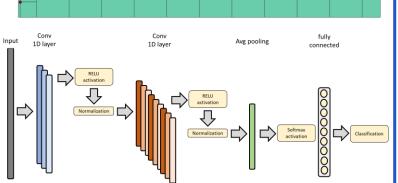
The 11th International Conference on Fracture Fatigue and Wear

August 29th-31th, 2023, Ghent, Belgium

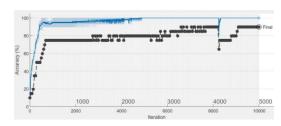

Crack quantification by extracting information from vibration data using 1D-CNN

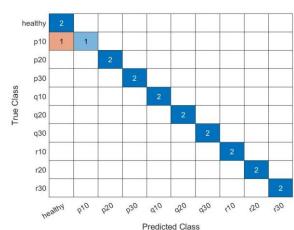
Muhammad Irfan Shirazi, Samir Khatir, Magd Abdel Wahab

Introduction: Structural Health Monitoring (SHM) is broad field with application in aerospace and automotive industries, civil engineering structures and both renewable energy structures and conventional fossil fuel pipelines.


Artificial intelligence is a rapidly growing field of research. It has become an important tool in SHM as it allows

- 1. Greater resolution of damage features
- 2. Higher accuracy in determining damage
- Improved efficiency as near-real-time detection is possible


Methodology: An FE model of a simple beam is generated that simulates the impact of a hammer causing vibrations to be detected at the accelerometer.


Crack depth	Crack location		
	5	100	184
	mm	mm	mm
10mm	p10	q10	r10
20mm	p20	q20	r20
30mm	p30	q30	r30

Conclusions: Vibration data has enough features to quantify 3 cracks when using deep 1D-CNNs.

Results: The 1D-CNN is capable of classifying the different damages efficiently

