Numerical investigation to predict the geometrical and mechanical properties of a flow-formed workpiece using 1.7220 steel

University of Ghent Acar Can Kocabicak

Introduction

Figure 1 Principle of backward flow forming

Table 1 Descriptions of flow formation in a magazine in a management

Table 1 Descriptions of flow forming process parameters				
S _O Starting wall thickness (mm)	γ Leading angle (degree,°)	F _A Axial force (N or Kg)		
S ₁ Finished wall thickness (mm)	δ Trailing angle(degree,°)	F _R Radial force (N)		
L _O Starting length (mm)	R Nose radius(mm)	F _T Tangential force (N)		
D _I Inside diameter (mm)	V Feed rate (mm/minute)	n Spindle Speed (rpm)		

Finite Element Model

Figure 2 Mesh demonstration of the workpiece, roller, and mandrel

Figure 3 ALE re-meshing generation under the roller

Equations

Law Limited Tresca friciton model

$$\tau = \mu \sigma_n \quad \begin{cases} If & \mu \sigma_{n < \overline{m}} \frac{\sigma_0}{\sqrt{3}} & then & \tau = \mu \sigma_n \\ If & \mu \sigma_{n \ge \overline{m}} \frac{\sigma_0}{\sqrt{3}} & then & \tau = \overline{m} \frac{\sigma_0}{\sqrt{3}} \end{cases}$$

$$C_{CR} = \int_0^{\bar{\varepsilon}_f} \left(\frac{\sigma_{max}}{\bar{\sigma}} \right) d\bar{\varepsilon}$$

Von Mises Stress

$$\sigma_{eq} = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 \right]^{\frac{1}{2}}$$

$$\tau = \mu(\Delta \cdot v \sigma_n) \Delta v$$

$$m = m_0 + m_1 T$$

$$\varphi_c = h(T - T_0)$$

FEA Method

Table 2 FEA model contact features

Figure 4 Von Mises Equivalent Stress results variable feed rates

$\dot{W} = \eta c_{ij} \varepsilon_{ij} = \eta K \sqrt{3} \bar{\varepsilon}^{m+1}$ FEA Results

Figure 5 Flow formed part length and wall thickness measurement designation.

rate. These factors affect process accuracy, surface quality, and bulge formation.

Figure 6 Cross section of the flow formed parts using variant feed rates from 0.25 mm/s (1) to 2 mm/s (8)

Figure 7 Bulge dimensions according to different feed rates

	Input		Flowformed FEA Output	
Sample	Feed rate	Mandrel	Wall	Mean inside
S	(mm/s)	(rpm)	thickness (mm)	diameter (mm)
1	0.25	220	2.97	50.83
2	0.5	220	3.00	50.70
3	0.75	220	3.05	50.63
4	1.00	220	3.08	50.53
5	1.25	220	3.11	50.44
6	1.50	220	3.12	50.31
7	1.75	220	3.13	50.21
8	2.00	220	3.14	50.17

Table 3 Wall thickness and mean inside diamater results

Conclusions

- It was observed that the outer surface of the workpiece exhibited higher strain values, which gradually decreased towards the inner diameter.
- The flow forming process frequently faces defects like built-up edges, bell-mouth formations, and diameter growth, which are heavily influenced by feed
- Lower feed rates cause greater radial deformation and diameter growth, whereas faster roller movements minimize plastic deformation defects, leading to smaller inner diameters and bulges in flow-formed tubes with short roller feed strokes.

References

1. R.J. Bhatt, H.K. Raval, Experimental Study on Flow Forming Process and its Numerical Validation, in: Mater. Today Proc., Elsevier Ltd, 2018: pp. 7230–7239. https://doi.org/10.1016/j.matpr.2017.11.390

2. B.K. Roy, Y.P. Korkolis, Y. Arai, W. Araki, T. Iijima, J. Kouyama, A study of forming of thin-walled hemispheres by mandrel-free spinning of commercially pure aluminum tubes, J. Manuf. Process. 64 (2021) 306–322. https://doi.org/10.1016/j.jmapro.2020.12.036 3. P.F. Gao, M. Li, M. Zhan, L. Xing, F. Ma, M.W. Fu, Circumferential twist in flow forming of tubular parts: Characterization, understanding and control, J. Manuf. Process. 65 (2021) 144–152.

https://doi.org/10.1016/j.jmapro.2021.03.020