

Fuzzy Henstock-Δ-Integral on Time Scales and Its Application

FSDM4061

Yubing Li, Yabin Shao, Zengtai Gong School of Science, Chongqing University of Posts and Telecommunications

Introduction

In this paper, we define the fuzzy Henstock- Δ -integral and fuzzy Δ -derivative on time scales(or briefly FH- Δ -integral, Δ derivative). Then, we give some convergence theorems for this kind of nonabsolute convergent integrals. Finally, we obtain an existence theorem of the global solutions for this kind of fuzzy generalized differential systems.

Methods

- > time scales;
- > Arzela-Ascoli theorem;
- > equicontinuity of sequences.

Main Results

Definition 3.1 Suppose $\tilde{f}:[a,b]_{\mathbb{T}}\to\mathbb{R}_{\mathscr{F}}$ and there exists $\tilde{F}:[a,b]_{\mathbb{T}}\to\mathbb{R}_{\mathscr{F}}$. If for $\forall\ \varepsilon>0,\exists$ a Δ -gauge δ s.t. for any partitions $P = \{[q_{i-1}, q_i]; \xi_i\}_{i=1}^n$, which is δ -fine

$$D\left(\sum_{i=1}^n \tilde{f}(\xi_i)(q_i-q_{i-1})+\tilde{F}(q_{i-1}),\tilde{F}(q_i)\right)<\varepsilon,$$

then we say \tilde{f} is fuzzy Henstock- Δ -integrable on $[a,b]_{\mathbb{T}}$. We denote $\tilde{F}(q) = (FH) \int_a^q \tilde{f}(s) \Delta s$, $\tilde{f} \in FH_{[a,b]_{\mathbb{T}}}$.

Definition 3.2 Suppose $\exists \tilde{f}^{\Delta}(p) \in \mathbb{R}_{\mathscr{F}}$ and given $\forall \varepsilon > 0$, $\exists U_{\mathbb{T}}(i.e.\ U_{\mathbb{T}} = (p-\iota, p+\iota) \cap$ $[a,b]_{\mathbb{T}}$ for $\iota > 0$) s.t.

 $D(\tilde{f}(\sigma(p)) \ominus_{gH} \tilde{f}(q), \tilde{f}^{\Delta}(p)(\sigma(p)-q)) \leq \varepsilon(\sigma(p)-q) \text{ for all } q \in U_{\mathbb{T}},$

then \tilde{f} is fuzzy Δ -differentiable. Denote by $\tilde{f}^{\Delta}(q)$ the fuzzy Δ -derivative.

Definition 3.3 *Suppose* $\tilde{f}:[a,b]_{\mathbb{T}}\to\mathbb{R}_{\mathscr{F}}$. *If* for $\forall \ \varepsilon>0, \exists \ \eta>0$ *s.t.* for any disjoint finite interval families $\{[c_i,d_i]_{\mathbb{T}}, 1 \leq i \leq n\}$ satisfy $\sum_{i=1}^n |d_i-c_i| < \eta$,

$$\sum_{i=1}^n \boldsymbol{\omega}(\tilde{f}, [c_i, d_i]_{\mathbb{T}}) < \boldsymbol{\varepsilon},$$

then we say \tilde{f} is AC^* .

Definition 3.8 Suppose $\tilde{f}:[a,b]_{\mathbb{T}}\times\mathbb{R}_{\mathscr{F}}\to\mathbb{R}_{\mathscr{F}}$ belong to the class $\upsilon([a,b]_{\mathbb{T}}\times\mathbb{R}_{\mathscr{F}},\pi,S)$ if

- 1. $\pi:[a,b]_{\mathbb{T}}\to\mathbb{R}^+$ is continuous with $\|\pi\|\leq \frac{1}{2U}, [a,b]_{\mathbb{T}}\subset [0,U]$.
- 2. Every S > 0,

$$\{(FH)\int_0^q \tilde{f}(p,\tilde{\vartheta}(p))\Delta p, \|\tilde{\vartheta}\| \leq S\} \subset C_{rd}([a,b]_{\mathbb{T}},\mathbb{R}_{\mathscr{F}})$$

is weakly relatively compact and equi-continuous and uniformly ACG*.

3. Let every rd-continuous $\tilde{\vartheta}: [a,b]_{\mathbb{T}} \to \mathbb{R}_{\mathscr{F}}, q \in [a,b]_{\mathbb{T}} \to \tilde{f}(q,\tilde{\vartheta}(q))$ is FH- Δ integrable and

$$\lim \sup_{s \to \infty} \left(\frac{1}{S} \sup_{\|\tilde{\vartheta}\| \le S} \|\tilde{f}(\cdot, \tilde{\vartheta}(\cdot))\| \right) < \frac{1}{2}.$$

4. There is $\tilde{\vartheta}_n \longrightarrow \tilde{\vartheta}$ with respect to $C^*_{rd}([0,1]_{\mathbb{T}},\mathbb{R}_{\mathscr{F}})$ with $\tilde{f}(\cdot,\tilde{\vartheta}_n(\cdot)) \xrightarrow{weakly} \tilde{f}(\cdot,\tilde{\vartheta}(\cdot))$.

Theorem 3.1 Suppose $\tilde{f}, \tilde{f}_n \in C_{rd}([0,1]_{\mathbb{T}}, \mathbb{R}_{\mathscr{F}})$ is bounded. Then $\tilde{f}_n(q) \longrightarrow \tilde{f}(q)$ if and only if $\tilde{f}_n(q) \xrightarrow{weakly} \tilde{f}(q)$, $q \in [0,1]_{\mathbb{T}}$.

Theorem 3.2 Suppose $\tilde{f}(t), \tilde{f}_n : [a,b]_{\mathbb{T}} \to \mathbb{R}_{\mathscr{F}}$. If \tilde{f}_n is FH- Δ -integrable, let \tilde{F}_n is primitive of \tilde{f}_n and satisfies:

- 1. $\vartheta^* \tilde{f}_n(q) \to \vartheta^* \tilde{f}(q)$ a.e. for all $\vartheta^* \in C^*_{rd}([a,b]_{\mathbb{T}}, \mathbb{R}_{\mathscr{F}})$.
- 2. The set $\Pi = \{\vartheta^* \tilde{F}_n, n = 1, 2, \cdots\}$ is ACG^* uniformly on $[a,b]_{\mathbb{T}}$, for $\forall \vartheta^* \in$ $C^*_{rd}([a,b]_{\mathbb{T}},\mathbb{R}_{\mathscr{F}}).$
- 3. The set Π is equi-continuous and for $\forall \vartheta^* \in C^*_{rd}([a,b]_{\mathbb{T}}, \mathbb{R}_{\mathscr{F}})$,

then $\tilde{f} \in FH_{[a,b]_{\mathbb{T}}}$ and

$$\int_0^q \tilde{f}_n(p) \Delta p \to \int_0^q \tilde{f}(p) \Delta p.$$

Definition 4.1 If $\tilde{\vartheta}(q)$ is a global (i)-solution (or (ii)-solution) of (1) on [0,U] iff it is rd-continuous and satisfies:

$$\begin{cases} \tilde{\vartheta}(q) = \int_0^U \pi(p)\tilde{\vartheta}(p)\Delta p + \int_0^q \tilde{f}(p,\tilde{\vartheta}(p))\Delta p, \\ \tilde{\vartheta}(0) = \int_0^U \pi(p)\tilde{\vartheta}(p)\Delta p \end{cases}$$
(2)

or

$$\begin{cases} \int_{0}^{U} \pi(p)\tilde{\vartheta}(p)\Delta p = \tilde{\vartheta}(q) + (-1)\int_{0}^{q} \tilde{f}(p,\tilde{\vartheta}(p))\Delta p, \\ \tilde{\vartheta}(0) = \int_{0}^{U} \pi(p)\tilde{\vartheta}(p)\Delta p \end{cases}$$
(3)

respectively.

Theorem 4.1 Let $\tilde{f}: [a,b]_{\mathbb{T}} \times \mathbb{R}_{\mathscr{F}} \to \mathbb{R}_{\mathscr{F}} \in v([a,b]_{\mathbb{T}} \times \mathbb{R}_{\mathscr{F}}, \pi, S)$ and $[a,b]_{\mathbb{T}} \subset [0,U]$. Then there is a global (i)-solution and a global (ii)-solution $\tilde{\vartheta}, \tilde{\vartheta}'$ of (1) for which $\tilde{\vartheta}(0) =$ $\int_0^U \pi(p)\,\tilde{\vartheta}(p)\Delta p.$

Conclusions

To popularize the FDEs on time scales, we first propose the notions of FH- Δ integral and fuzzy Δ -derivative on $[a,b]_T$. Then, we obtain some convergence theorems of the FH- Δ -integral on $[a,b]_T$. Finally, as the application, we obtain an existence theorem of the global (i)-solution and global (ii)-solution for fuzzy differential equations.

Definition 3.4 The family of fuzzy functions is uniformly ACG^* , if $M = \bigcup_{i=1}^n M_i$ and for $\forall i$, the family of fuzzy functions is uniformly AC*