APPLICATION OF ANTLION'S HUNTING STRATEGY AND ARTIFICIAL NEURAL NETWORK TO FAILURE IDENTIFICATION OF 2D CANTILEVER STRUCTURES

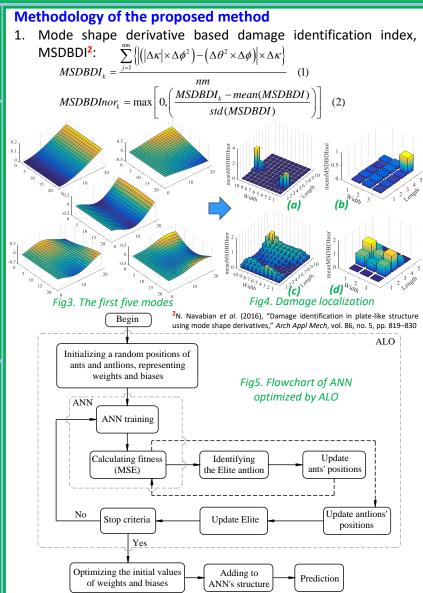
Long Viet Ho^{1,2,*}, Trang Thi Trinh², Guido De Roeck³, Thanh Bui-Tien² and Magd Abdel Wahab¹

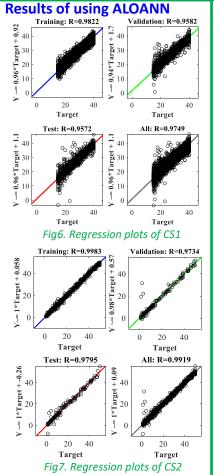
¹ Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, Belgium

² University of Transport and Communications, Vietnam

³ Department of Civil Engineering, KU Leuven, 3001 Leuven, Belgium

The aims of the study


- Improving ANN's performance by a stochastic optimization process
- Proposing a simple and effective tool for damage detection in 2D structures using mode shapes and their derivatives


Problems

- Assessment of structural damage is always an essential requirement in maintenance and repair of existing structures.
- Visual inspection cannot sufficiently satisfy this requirement
 Using dynamic properties for a direct localization of damage via damage index but NO quantification.
- Optimization process or artificial neural network can be used to deal with damage quantification. HOWEVER, the first approach is time-consuming. The latter is fast BUT can be trapped in local minima → Taking advantage of the two approaches to PROPOSE a hybrid model, ALO¹-ANN

¹S. Mirjalili, "The Ant Lion Optimizer," *Advances in Engineering Software*, vol. 83, pp. 80–98, May 2015, doi: 10.1016/j.advengsoft.2015.01.010

Case studies Two cantilever structures Fig1. Two damaged elements /100 elements in a pure plate Case studies Fig2. One damaged element/15 elements in a concrete-steel composite structure

Summary			
cs	-		s Investigated
	element(s)	reductio	n elements
CS1	2	15%-40	% 15 th -35 th
CS2	1	1%-50%	- 1 12
cs	Samples	ANN's	Data
		structure	split
CS1	5460	50-30-3	70-15-15
CS2	600	15-31-2	70-15-15
Conclusions			

- ALOANN could obtain high Rvalues with all data, 0.975 for CS1 and 0.992 for CS2 compared to 0.970 and 0.99 using ANN
- In CS1: ALOANN localized correctly all damage scenarios while ANN misidentified one. The errors between estimated and actual levels using ALOANN were smaller than that of ANN.
- In CS2: ALOANN and ANN were successful in damage localization for all scenarios. However, in almost all cases, ALOANN showed superior performances in damage quantification compared to ANN
- Parallel working should be considered in further works to reduce computational time.

Contact (*): Long Viet HO (hoviet.long@ugent.be or longhv ph@utc.edu.vn)

Acknowledgements

The authors acknowledge the financial support of VLIR-UOS TEAM Project, VN2018TEA479A103, 'Damage assessment tools for Structural Health Monitoring of Vietnamese infrastructures', funded by the Flemish Government.

With the support of THE BELGIAN
DEVELOPMENT COOPERATION

SDMA 202

August 4-5, 2021 Online via MS Teams