

Short note on "Nonlinear optimization problem subjected to fuzzy relational equations defined by Dubois-Prade family of t-norms"

Xiaoling LIU^a, Khizar HAYAT^b and **Xiaopeng YANG**^a

- ^a School of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China
- ^b Department of Mathematics, University of Kotli, Azad Jammu and Kashmir, Pakistan

Introduction

Fuzzy relation equation plays an important role in fuzzy logic, fuzzy reasoning, fuzzy comprehensive evaluation, et al. The resolution of fuzzy relation equation system with max-Dubois-Prade composition were investigated in [1]. It has been verified that the complete solution of such a system is fully determined by its unique maximum solution and a finite number of minimal solutions. In fact, solving the fuzzy relation system is equivalent to obtaining all its minimal solutions. In [1], the authors provided an approach to find all the minimal solutions. However, it is found that their proposed approach is ineffective in some cases.

Phenomenon

In Ref. [1], the authors defined the index sets J_1 , J_2 , ..., J_n . Based in these index sets, they provided an approach for obtaining all the minimal solutions of a system of fuzzy relation equations with max-Dubois-Prade composition. However, as shown in Example 1, the vector obtained by the method in [1] might not be a minimal solution.

Reason

Let $E = J_1 \times J_2 \times \bullet \bullet \bullet \times J_m$. As shown in [1], a corresponding vector X(e) could be generated by each e in the set E. Moreover, it is asserted in [1] that X(e) is a minimal solution of the fuzzy relation equation system. However, this assertion is incorrect. The condition that makes the assertion valid

is that the inequality "X(e)≤X^{max}" holds, X^{max} where represents the maximum solution. But this inequality doesn't hold for some specific cases (see Example 1).

Correction

Let $E=J_1 \times J_2 \times ... \times J_n$. In this paper, we have modified the expression of the index sets J_1 , J_2 , ..., J_n in [1]. The corresponding corrected index sets were denoted by J_1 , J_2 , ..., J_n in this paper. Let $E^==J_1^-\times J_2^-\times \bullet \bullet \times J_m^-$. It was formally proved that for each $e\in E^-$, the corresponding vector X(e) is a solution of the fuzzy relation equation system with maxDubois-Prade composition. As a result, the complete solution of such a system is exactly the union set $\{[X(e), X^{max}] | e\in E^-\}$. Hence we corrected the method proposed in [1] for solving the fuzzy relation equations with max-Dubois-Prade composition.

Conclusions

This short note aims to make some modification for improving the results presented in [1]. A. Ghodousian et al. discussed the resolution of a system of max-Dubois-Prade fuzzy relation equations based on their proposed index sets J_i , $i \in I$. It is found that not every $e \in E = J_1 \times J_2 \times \bullet \bullet \bullet \times J_m$ corresponds to a solution. To overcome this flaw, we modify the expression of the index sets, denoted by $J_i^=$, $i \in I$. Based on the modified index sets, resolution of the max-Dubois-Prade fuzzy relation equations becomes easier, regarding the computational cost.